STREAM 2D A neutron transport analysis code, STREAM (Steady state and Transient REactor Analysis code with Method of Characteristics), has been developed to perform a whole LWR core calculation with the direct transport analysis method and the two-step method. Numerous advanced features, especially resonance treatment methods, have been developed and implemented in the STREAM code for higher accuracy and performance. STREAM with the advanced methods has order of ~100 pcm accuracy in LWR analyses. STREAM has capabilities to analyze the whole LWR core through the two-step (with PARCS or RAST-K 2.0) method and direct transport method (2-D). STREAM 3D A
neutron transport analysis code, STREAM (Steady state and Transient
REactor Analysis code with Method of Characteristics), has been
developed to perform a whole LWR core calculation with the direct
transport analysis method and the two-step method. Numerous advanced
features, especially resonance treatment methods, have been developed
and implemented in the STREAM code for higher accuracy and performance.
STREAM with the advanced methods has order of ~100 pcm accuracy in LWR
analyses. STREAM has capabilities to analyze the whole LWR core through
the two-step (with PARCS or RAST-K 2.0) method and direct transport
method (2-D). RAST-K 2.0 The RAST-K 2.0 code is a recently developed three-dimensional two-group PWR core analysis code by UNIST CORE lab. It aims to be used by utilities to perform in-core fuel management studies, core design calculations, load follow simulation and transient analysis in neutronics. The RAST-K 2.0 code is capable of performing steady-state, quasi transient and transient calculations by solving the two-group three-dimensional neutron diffusion equation in eigenvalue or fixed source modes. MCS A Monte Carlo code MCS has being developed at Ulsan National Institute of Science and Technology (UNIST) since 2013. The target of MCS is to solve complex whole core problems like BEAVRS. MCS can treat the 3D whole core geometry with universe and lattice, and the neutron physics with probability-table, free-gas treatment, S(a,b) and Doppler Broadening Rejection Correction. STREAM-SNF A radiation source term capability has been implemented in STREAM to perform SNF characterization, cask dose rate analysis, for waste management, radiological safety and burnup credit applications. RXSP The accuracy of the nuclear cross section data is a prerequisite for the accuracy of reactor neutron transport calculations, i.e. MC method. RXSP is a nuclear Cross Section Processing code being originally developed by REAL group, Department of Engineering Physics, Tsinghua University, which is mainly intended to reactor analysis. The current version is RXSP-Beta 2.0 released in August,2013 domestically in China Mainland. The Beta3.0 version is being developed jointly by UNIST and Tsinghua University(per the agreement of Prof. Lee and Prof. WANG). MPCORE Go to MPCORE Page Nowadays multi-physics simulation attracts a lot of attention
from nuclear researchers worldwide since it is able to produce more
realistic results in terms of reactor core safety margins against
critical core conditions. The analysis of non-quantified uncertainties
on account of multi-physics phenomena involves the coupled modeling of
neutron kinetics, coolant thermal-hydraulics and nuclear fuel
performance using the numerical integration methods with built-in
precision and accuracy control. A new reactor core multi-physics
system has been developed to meet the control precision criterion and
to facilitate the transparency of the coupling procedure using the
external loose coupling approach. The new code implements an
adaptive time step to achieve a solution of a prescribed
tolerance, the restart capability to maintain sustainability of
numerical simulation, the random sampling method for uncertainty
quantification, and the lossy compression algorithm for output
data size optimization. The present configuration of the
multi-physics system addresses the two-step core neutronics
approach with a method-of-characteristic cross-section code and a
nodal diffusion solver aided by a pin-by-pin power reconstruction
module. |